Health Effects and Sources of Prebiotic Dietary Fiber (2024)

1. Gibson GR, Roberfroid MB.Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995;125(6):1401–12. [PubMed] [Google Scholar]

2. Reid G, Sanders M, Gaskins H.New scientific paradigms for probiotics and prebiotics. J Clin 2003;37(2):105–18. [PubMed] [Google Scholar]

3. Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 2004;17(2):259–75. [PubMed] [Google Scholar]

4. Roberfroid M.Prebiotics: The Concept Revisited. J Nutr 2007;137(3):830S–837S. [PubMed] [Google Scholar]

5. Pineiro M, Asp N-G, Reid G, Macfarlane S, Morelli L, Brunser O, Tuohy K. FAO technical meeting on prebiotics. J Clin Gastroenterol 2008;42:S156–9. [PubMed] [Google Scholar]

6. Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, Gareau M, Murphy EF, Saulnier D, Loh G, et al. Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods 2010;7(1):1–19. [Google Scholar]

7. Bindels LB, Delzenne NM, Cani PD, Walter J. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 2015;12(5):303–10. [PubMed] [Google Scholar]

8. Carlson J, Slavin J. Health benefits of fiber, prebiotics and probiotics: a review of intestinal health and related health claims. Qual Assur Saf Crop Foods 2016;8(4):539–54. [Google Scholar]

9. Slavin J.Fiber and prebiotics: mechanisms and health benefits. Nutrients 2013;5(4):1417–35. [PMC free article] [PubMed] [Google Scholar]

10. Scientific Opinionon the substantiation of health claims related to various food(s)/food constituents(s) and increasing numbers of gastro-intestinal microorganisms (ID 760, 761, 779, 780, 779, 1905), and decreasing potentially pathogenic gastro-intestinal microorganisms (ID 760, 761, 779, 780, 779, 1905) pursuant to Article 13(1) of Regulation (EC) No 1924/20061. EFSA Journal 2010;8(10):1809. [Google Scholar]

11. Moshfegh AJ, Friday JE, Goldman JP, Ahuja JK. Presence of inulin and oligofructose in the diets of Americans. J Nutr 1999;129(7 Suppl):1407S–11S. [PubMed] [Google Scholar]

12. van Loo J, Coussem*nt P, de Leenheer L, Hoebregs H, Smits G. On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit Rev Food Sci Nutr 1995;35(6):525–52. [PubMed] [Google Scholar]

13. Global Market Insights. Prebiotics market size by ingredient (inulin, GOS, FOS, MOS), by application (animal feed, food & beverages [dairy, cereals, baked goods, fermented meat, dry foods], dietary supplements [food, nutrition, infant formulations]), industry analysis report, regional outlook, application potential, price trends, competitive market share & forecast, 2017 – 2024 [Internet]2017. Available from: https://www.gminsights.com/industry-analysis/prebiotics-market.

14. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505(7484):559–63. [PMC free article] [PubMed] [Google Scholar]

15. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, et al. Human gut microbiome viewed across age and geography. Nature 2012;486(7402):222–7. [PMC free article] [PubMed] [Google Scholar]

16. Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013;36(5):305–12. [PubMed] [Google Scholar]

17. Moloney RD, Desbonnet L, Clarke G, Dinan TG, Cryan JF. The microbiome: stress, health and disease. Mamm Genome 2014;25(1–2):49–74. [PubMed] [Google Scholar]

18. Preidis GA, Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology 2009;136(6):2015–31. [PMC free article] [PubMed] [Google Scholar]

19. United States Food and Drug Administration. Guidance for Industry on Center for Drug Evaluation and Research (CDER) Center for Devices and Radiological Health (CDRH) Center for Food Safety and Applied Nutrition (CFSAN). Off Commun Training, Manuf Assist2007.

20. van Loveren H, Sanz Y, Salminen S. Health claims in Europe: probiotics and prebiotics as case examples. Annu Rev Food Sci Tech 2012;3:247–61. [PubMed] [Google Scholar]

21. Borruel N.Increased mucosal tumour necrosis factor alpha production in Crohn's disease can be downregulated ex vivo by probiotic bacteria. Gut 2002;51(5):659–64. [PMC free article] [PubMed] [Google Scholar]

22. Salminen S, Ramos P, Fonden R, Wright A. Substrates and lactic acid bacteria. In: Salminen S, von Wright A, editors. Lactic acid bacteria. New York: Marcel Dekker, Inc; 1993. p. 295–313. [Google Scholar]

23. Salyers A.Energy sources of major intestinal fermentative anaerobes. Am J Clin Nutr 1979;32(January):158–63. [PubMed] [Google Scholar]

24. Collado M, Isolauri E. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 2008;55(4):894–9. [PubMed] [Google Scholar]

25. Kalliomäki M, Collado M. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 2008;87(3):534–8. [PubMed] [Google Scholar]

26. Santacruz A.Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 2010;104(1):83–4. [PubMed] [Google Scholar]

27. Schwiertz A, Taras D, Schäfer K, Beijer S. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 2010;18(1):190–5. [PubMed] [Google Scholar]

28. Yin Y-N, Yu Q-F, Fu N, Liu X-W, Lu F-G. Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J Gastroenterol 2010;16(27):3394–401. [PMC free article] [PubMed] [Google Scholar]

29. Hansen J, Gulati A, Sartor RB. The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Curr Opin Gastroenterol 2010;26(6):564–71. [PMC free article] [PubMed] [Google Scholar]

30. Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P, Vandamme P, Vermeire S. Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives. Gut 2011;60(5):631–7. [PubMed] [Google Scholar]

31. Louis P, Scott K, Duncan S. Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl 2007;102(5):1197–208. [PubMed] [Google Scholar]

32. Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Ovid: colonic health: fermentation and short chain fatty acids. Clin Gastroenterol 2006;40(3):235–43. [PubMed] [Google Scholar]

33. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 2014;63(8):1275–83. [PubMed] [Google Scholar]

34. Carlson J, Esparza J, Swan J, Taussig D, Combs J, Slavin J. In vitro analysis of partially hydrolyzed guar gum fermentation differences between six individuals. Food Funct 2016;7(4):1833–8. [PubMed] [Google Scholar]

35. Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 2016;7(February):185. [PMC free article] [PubMed] [Google Scholar]

36. Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM, Bindels LB, de Vos WM, Gibson GR, Thissen JP, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013;62(8):1112–21. [PMC free article] [PubMed] [Google Scholar]

37. Calvani R, Miccheli A, Capuani G, Tomassini Miccheli A, Puccetti C, Delfini M, Iaconelli A, Nanni G, Mingrone G. Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype. Int J Obes 2010;34(6):1095–8. [PubMed] [Google Scholar]

38. Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, Cheeseman M, Nunez D, Sweatman BC, Haselden JN, Cox RD, et al. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics 2007;29(2):99–108. [PubMed] [Google Scholar]

39. Waldram A, Holmes E, Wang Y, Rantalainen M, Wilson ID, Tuohy KM, McCartney AL, Gibson GR, Nicholson JK. Top-down systems biology modeling of host metabotype−microbiome associations in obese rodents. J Proteome Res 2009;8(5):2361–75. [PubMed] [Google Scholar]

40. Cashman KD.Calcium intake, calcium bioavailability and bone health. Br J Nutr 2002;87(Suppl 2):S169–77. [PubMed] [Google Scholar]

41. Whisner CM, Martin BR, Schoterman MHC, Nakatsu CH, McCabe LD, McCabe GP, Wastney ME, van den Heuvel EG, Weaver CM. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial. Br J Nutr 2013;110(7):1292–303. [PubMed] [Google Scholar]

42. Ellegård L, Andersson H, Bosaeus I. Inulin and oligofructose do not influence the absorption of cholesterol, or the excretion of cholesterol, Ca, Mg, Zn, Fe, or bile acids but increases energy excretion in ileostomy subjects. Eur J Clin Nutr 1997;51(1):1–5. [PubMed] [Google Scholar]

43. van den Heuvel EG, Schaafsma G, Muys T, van Dokkum W. Nondigestible oligosaccharides do not interfere with calcium and nonheme-iron absorption in young, healthy men. Am J Clin Nutr 1998;67(3):445–51. [PubMed] [Google Scholar]

44. Tahiri M, Tressol JC, Arnaud J, Bornet FRJ, Bouteloup-Demange C, Feillet-Coudray C, Brandolini M, Ducros V, Pépin D, Brouns F, et al. Effect of short-chain fructooligosaccharides on intestinal calcium absorption and calcium status in postmenopausal women: a stable-isotope study. Am J Clin Nutr 2003;77(2):449–57. [PubMed] [Google Scholar]

45. López-Huertas E, Teucher B, Boza JJ, Martínez-Férez A, Majsak-Newman G, Baró L, Carrero JJ, González-Santiago M, Fonollá J, Fairweather-Tait S. Absorption of calcium from milks enriched with fructo-oligosaccharides, caseinophosphopeptides, tricalcium phosphate, and milk solids. Am J Clin Nutr 2006;83(2):310–16. [PubMed] [Google Scholar]

46. van den Heuvel EGHM, Muijs T, van Dokkum W, Schaafsma G. Lactulose stimulates calcium absorption in postmenopausal women. J Bone Miner Res 1999;14(7):1211–16. [PubMed] [Google Scholar]

47. van den Heuvel EG, Schoterman MH, Muijs T. Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women. J Nutr 2000;130(12):2938–42. [PubMed] [Google Scholar]

48. Tahiri M, Tressol JC, Arnaud J, Bornet F, Bouteloup-Demange C, Feillet-Coudray C, Ducros V, Pépin D, Brouns F, Rayssiguier AM, et al. Five-week intake of short-chain fructo-oligosaccharides increases intestinal absorption and status of magnesium in postmenopausal women. J Bone Miner Res 2001;16(11):2152–60. [PubMed] [Google Scholar]

49. Griffin I, Davila P, Abrams S. Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr 2002;87(Suppl 2):S187–91. [PubMed] [Google Scholar]

50. Coudray C, Bellanger J, Castiglia-Delavaud C, Rémésy C, Vermorel M, Rayssignuier Y. Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of calcium, magnesium, iron and zinc in healthy young men. Eur J Clin Nutr 1997;51(6):375–80. [PubMed] [Google Scholar]

51. Abrams S, Griffin I, Hawthorne K. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr 2005;82(2):471–6. [PubMed] [Google Scholar]

52. Scholz-Ahrens KE, Ade P, Marten B, Weber P, Timm W, Açil Y, Glüer CC, Schrezenmeir J. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr 2007;137(3 Suppl 2):838S–46S. [PubMed] [Google Scholar]

53. Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res 2012;56(1):184–96. [PubMed] [Google Scholar]

54. Ballongue J, Schumann C, Quignon P. Effects of lactulose and lactitol on colonic microflora and enzymatic activity. Scand J Gastroenterol 1997;32(sup222):41–4. [PubMed] [Google Scholar]

55. De Preter V, Vanhoutte T, Huys G, Swings J, Rutgeerts P, Verbeke K. Effect of lactulose and Saccharomyces boulardii administration on the colonic urea-nitrogen metabolism and the bifidobacteria concentration in healthy human subjects. Aliment Pharmacol Ther 2006;23(7):963–74. [PubMed] [Google Scholar]

56. De Preter V, Coopmans T, Rutgeerts P, Verbeke K. Influence of long-term administration of lactulose and Saccharomyces boulardii on the colonic generation of phenolic compounds in healthy human subjects. J Am Coll Nutr 2006;25(6):541–9. [PubMed] [Google Scholar]

57. Geboes KP, De Hertogh G, De Preter V, Luypaerts A, Bammens B, Evenepoel P, Ghoos Y, Geboes K, Rutgeerts P, Verbeke K. The influence of inulin on the absorption of nitrogen and the production of metabolites of protein fermentation in the colon. Br J Nutr 2006;96(6):1078–86. [PubMed] [Google Scholar]

58. Birkett A, Muir J, Phillips J, Jones G, O'Dea K. Resistant starch lowers fecal concentrations of ammonia and phenols in humans. Am J Clin Nutr 1996;63(5):766–72. [PubMed] [Google Scholar]

59. Heijnen MLA, Beynen AC. Consumption of retrograded (RS3) but not uncooked (RS2) resistant starch shifts nitrogen excretion from urine to feces in cannulated piglets. J Nutr 1997;127(9):1828–32. [PubMed] [Google Scholar]

60. Cloetens L, Broekaert WF, Delaedt Y, Ollevier F, Courtin CM, Delcour JA, Rutgeerts P, Verbeke K. Tolerance of arabinoxylan-oligosaccharides and their prebiotic activity in healthy subjects: a randomised, placebo-controlled cross-over study. Br J Nutr 2010;103(5):703–13. [PubMed] [Google Scholar]

61. Gibson G.Enrichment of bifidobacteria from human gut contents by oligofructose using continuous culture. FEMS Microbiol Lett 1994;118(1–2):121–7. [PubMed] [Google Scholar]

62. Gibson GR, McCartney AL, Rastall RA. Prebiotics and resistance to gastrointestinal infections. Br J Nutr 2005;93(Suppl 1):S31–4. [PubMed] [Google Scholar]

63. Prescott SL.Early-life environmental determinants of allergic diseases and the wider pandemic of inflammatory noncommunicable diseases. J Allergy Clin Immunol 2013;131(1):23–30. [PubMed] [Google Scholar]

64. Kalliomäki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 2001;107(1):129–34. [PubMed] [Google Scholar]

65. Sjögren Y, Jenmalm M. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy 2009;39(4):518–26. [PubMed] [Google Scholar]

66. Jeurink PV, van Esch BC, Rijnierse A, Garssen J, Knippels LM. Mechanisms underlying immune effects of dietary oligosaccharides. Am J Clin Nutr 2013;98(2):572S–7S. [PubMed] [Google Scholar]

67. Osborn D, Sinn J. Prebiotics in infants for prevention of allergy. Cochrane Database Syst Rev 2013;2013(3):CD006474. [PubMed] [Google Scholar]

68. Arslanoglu S, Moro GE, Schmitt J, Tandoi L, Rizzardi S, Boehm G. Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J Nutr 2008;138(6):1091–5. [PubMed] [Google Scholar]

69. Grüber C, van Stuivenberg M, Mosca F, Moro G, Chirico G, Braegger CP, Riedler J, Yavuz Y, Boehm G, Wahn U. Immunoactive prebiotics transiently prevent occurrence of early atopic dermatitis among low-atopy-risk infants. J Allergy Clin Immunol 2015;136(6):1696–8. [PubMed] [Google Scholar]

70. Schijf M, Kerperien J, Bastiaans J, Szklany K, Meerding J, Hofman G, Boon L, van Wijk F, Garssen J, Van't Land B. Alterations in regulatory T cells induced by specific oligosaccharides improve vaccine responsiveness in mice. PLoS One 2013;8(9):e75148. [PMC free article] [PubMed] [Google Scholar]

71. Vulevic J, Juric A, Tzortzis G, Gibson G. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J Nutr 2013;143(3):324–31. [PubMed] [Google Scholar]

72. Turner JR.Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009;9(11):799–809. [PubMed] [Google Scholar]

73. Quigley EMM.Leaky gut – concept or clinical entity? Curr Opin Gastroenterol 2016;32(2):74–9. [PubMed] [Google Scholar]

74. Delzenne N, Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes 2008;57(6):1470–81. [PubMed] [Google Scholar]

75. Suzuki T, Hara H. Dietary fat and bile juice, but not obesity, are responsible for the increase in small intestinal permeability induced through the suppression of tight junction protein expression in LETO and OLETF rats. Nutr Metab (Lond) 2010;7(1):19. [PMC free article] [PubMed] [Google Scholar]

76. Suzuki T, Yoshida S, Hara H. Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br J Nutr 2008;100(2):297–305. [PubMed] [Google Scholar]

77. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009;58(8):1091–103. [PMC free article] [PubMed] [Google Scholar]

78. Knaapen M, Kootte RS, Zoetendal EG, de Vos WM, Dallinga-Thie GM, Levi M, Stroes ES, Nieuwdorp M. Obesity, non-alcoholic fatty liver disease, and atherothrombosis: a role for the intestinal microbiota? Clin Microbiol Infect 2013;19(4):331–7. [PubMed] [Google Scholar]

79. Nakamura Y, Omaye S. Metabolic diseases and pro- and prebiotics: mechanistic insights. Nutr Metab (Lond) 2012;9(1):1–11. [PMC free article] [PubMed] [Google Scholar]

80. Dehghan P, Pourghassem Gargari B, Asghari Jafar-abadi M. Oligofructose-enriched inulin improves some inflammatory markers and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized controlled clinical trial. Nutrition 2014;30(4):418–23. [PubMed] [Google Scholar]

81. Frei R, Akdis M, O'Mahony L. Prebiotics, probiotics, synbiotics, and the immune system. Curr Opin Gastroenterol 2015;31(2):153–8. [PubMed] [Google Scholar]

82. Schley PD, Field CJ. The immune-enhancing effects of dietary fibres and prebiotics. Br J Nutr 2002;87(S2):S221–30. [PubMed] [Google Scholar]

83. Cloetens L, Ulmius M, Johansson-Persson A, Akesson B, Onning G. Role of dietary beta-glucans in the prevention of the metabolic syndrome. Nutr Rev 2012;70(8):444–58. [PubMed] [Google Scholar]

84. Lam K-L, Chi-Keung Cheung P. Non-digestible long chain beta-glucans as novel prebiotics. Bioact Carbohydrates Diet Fibre 2013;2(1):45–64. [Google Scholar]

85. van de Wiele T, Boon N, Possemiers S, Jacobs H, Verstraete W. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J Appl Microbiol 2007;102(2):452–60. [PubMed] [Google Scholar]

86. Macfarlane G, Steed H, Macfarlane S. Bacterial metabolism and health‐related effects of galacto‐oligosaccharides and other prebiotics. J Appl Microbiol 2008;104(2):305–44. [PubMed] [Google Scholar]

87. Marín-Manzano MC, Abecia L, Hernández-Hernández O, Sanz ML, Montilla A, Olano A, Rubio LA, Moreno FJ, Clemente A. Galacto-oligosaccharides derived from lactulose exert a selective stimulation on the growth of Bifidobacterium animalis in the large intestine of growing rats. J Agric Food Chem 2013;61(31):7560–7. [PubMed] [Google Scholar]

88. Crittenden RG, Playne MJ. Production, properties and applications of food-grade oligosaccharides. Trends Food Sci Technol 1996;7(11):353–61. [Google Scholar]

89. Rastall RA.Functional oligosaccharides: application and manufacture. Annu Rev Food Sci Technol 2010;1:305–39. [PubMed] [Google Scholar]

90. Wang H-F, Lim P-S, Kao M-D, Chan E-C, Lin L-C, Wang N-P. Use of isomalto-oligosaccharide in the treatment of lipid profiles and constipation in hemodialysis patients. J Ren Nutr 2001;11(2):73–9. [PubMed] [Google Scholar]

91. Mudgil D, Barak S, Khatkar BS. Guar gum: processing, properties and food applications—a review. J Food Sci Technol 2014;51(3):409–18. [PMC free article] [PubMed] [Google Scholar]

92. Sajilata MG, Singhal RS, Kulkarni PR. Resistant starch? A review. Compr Rev Food Sci Food Saf 2006;5(1):1–17. [PubMed] [Google Scholar]

93. Mäkeläinen H, Forssten S, Saarinen M. Xylo-oligosaccharides enhance the growth of bifidobacteria and Bifidobacterium lactis in a simulated colon model. Benef Microbes 2009;1(1):81–91. [PubMed] [Google Scholar]

94. Voragen A.Technological aspects of functional food-related carbohydrates. Trends Food Sci Technol 1998;9(8–9):328–35. [Google Scholar]

95. Longlive Bio-technology Co S. GRAS Notice 000458: Xylooligosaccharides.

96. Vazquez M, Alonso J, Domınguez H. Xylooligosaccharides: manufacture and applications. Trends Food Sci 2000;11(11):387–93. [Google Scholar]

Health Effects and Sources of Prebiotic Dietary Fiber (2024)

References

Top Articles
Latest Posts
Article information

Author: Greg Kuvalis

Last Updated:

Views: 6200

Rating: 4.4 / 5 (55 voted)

Reviews: 94% of readers found this page helpful

Author information

Name: Greg Kuvalis

Birthday: 1996-12-20

Address: 53157 Trantow Inlet, Townemouth, FL 92564-0267

Phone: +68218650356656

Job: IT Representative

Hobby: Knitting, Amateur radio, Skiing, Running, Mountain biking, Slacklining, Electronics

Introduction: My name is Greg Kuvalis, I am a witty, spotless, beautiful, charming, delightful, thankful, beautiful person who loves writing and wants to share my knowledge and understanding with you.